top of page
Selected publications​​

Machine intelligence and the data-driven future of marine science

K. Malde, N. O. Handegard, L. Eikvil, and A. B. Salberg (2019).

ICES J. Marine Science. https://doi.org/10.1093/icesjms/fsz057

Classification of ocean surface slicks in simulated hybrid-polarimetric SAR data

A. B. Salberg and S. Ø. Larsen (2018)

IEEE Trans. Geosci. Remote Sensing, vol. 56(12), pp. 7062-7073.

M. Kampffmeyer, A. B. Salberg and R. Jenssen (2018)

IEEE J. Selected Topics Applied Earth Observation Remote Sensing, vol. 11(6), pp. 1758-1768.

Tree species classification in Norway from airborne hyperspectral and airborne laser scanning data

Ø. D. Trier, A. B. Salberg, M. Kermit, Ø. Rudjord, T. Gobakken, E. Næsset, and D. Aarsten (2018)

Eur. J. Remote Sensing, vol. 51(1), pp. 336-351.

Multi-sensor forest vegetation height mapping methods for Tanzania

Ø. D. Trier, A. B. Salberg, J. Haarpaintner, D. Aarsten, T. Gobakken, and E. Næsset (2018)

Eur. J. Remote Sensing, vol. 51(1), pp. 587-606

A comparison of deep learning architectures for semantic mapping of very high resolution images

Q. Liu, A. B. Salberg and R. Jenssen (2018)

To appear in Proc. 2018 IEEE Int. Geosci. Remote Sens. Symp. (IGARSS), Valencia, Spain

Avalanche detection in SAR images using deep learning

A. U. Waldeland, J. H. Reksten, A. B. Salberg (2018)

To appear in Proc. 2018 IEEE Int. Geosci. Remote Sens. Symp. (IGARSS), Valencia, Spain

Semi-automatic mapping of charcoal kilns from airborne laser scanning data using deep learning

Ø. D. T. Trier, A. B. Salberg and L. H. Pilø (2018).

In Oceans of data. Proceedings of the 44th Annual Conference on Computer Applications and Quantitative Methods in Archaeology, pp. 221-231.

Automatic detection and mapping of avalanches in SAR images

Hamar, J., Salberg, A. B., and Ardelan, F. (2016). 

In IEEE Int. Geosci. Remote Sens. Symp. (IGARSS), Beijing, China.

Semantic segmentation of small objects and modeling of uncertainty in urban remote sensing images using deep convolutional neural networks

Kampffmeyer, M, Salberg, A.B., and Jenssen, R. (2016). 

In Proc. 2016 IEEE Conf. Computer Vision Pattern Recognition Workshops (CVPRW), Las Vegas.

​

Detection of seals in remote sensing images using features extracted from deep convolutional neural networks

Salberg, A. B. (2015). 

In 2015 IEEE Int. Geosci. Remote Sensing Symp. (IGARSS), Milan, Italy, July 26-31.

Oil spill detection in hybrid-polarimetric SAR images

Salberg, A. B., Rudjord, Ø., Solberg, A. H. S. (2014).

IEEE Trans. Geosci. Remote Sensing, vol. 52(10), pp. 6521 – 6533.

​

Automatic system for operational traffic monitoring using very-high resolution satellite imagery

Larsen, S. Ø., Salberg, A. B., Eikvil, L. (2013).

Int. J. Remote Sensing, vol. 34(13), pp. 4850-4870.

Land cover classification of partly missing data using support vector machines

Salberg, A. B. and Jenssen, R. (2012). 

Int. J. Remote Sensing, vol. 33(14), pp 4471-4481.

Land cover classification of cloud-contaminated multi-temporal high-resolution images

Salberg, A. B. (2011). 

IEEE Trans. Geosci. Remote Sens, vol. 49(1), pp 377-387.

Please reload

bottom of page